UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA ESCUELA PROFESIONAL DE INGENIERIA ELECTRONICA

ÁREA CURRICULAR: ESTUDIOS ESPECIFICOS SÍLABO DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería Electrónica

1.2Semestre Académico:2022-A1.3Código de la asignatura:EE4071.4Ciclo:IV1.5Créditos:3

1.6 Horas lectivas (Teoría, Práctica)1.7 Condición del curso1.8 4(T=2, L=2)1.9 Obligatorio

1.8 Requisito(s)

1.9 Docentes : Figueroa Santos Luis Leoncio

II. SUMILLA

El curso pertenece al área de estudios específicos, es de naturaleza teórico - práctica. Le permite al estudiante los conocimientos y aplicaciones de los diferentes tipos de dispositivos electrónicos modernos en el ámbito del análisis, diseño, desarrollo y programación de estos. Estos dispositivos están tecnológicamente en áreas de automatización industrial, en el campo de la electrónica, las telecomunicaciones, automotriz, robótica, entre otros. El Curso se desarrolla mediante las unidades de aprendizaje siguientes: I.- Diodos Semiconductores, II.- Transistores Bipolares de Unión, III.- Transistores de Efecto de campo, IV.--Dispositivos de potencia, Circuitos integrados y el Amplificador Operacional Ideal y sus aplicaciones. Uso del Proteus o Multisim para el laboratorio virtual.

III. COMPETENCIAS Y CAPACIDADES

3.1 Competencias

Comprueba las características teórico - prácticas de los diodos semiconductores.

Comprueba las características teóricas práctica de los transistores bipolares.

Comprueba las características teóricas práctica de los transistores de Efecto de campo.

Analiza los circuitos integrados y dispositivos de potencia en el campo industrial

Comprueba las características y aplicaciones de amplificador operacional ideal.

3.2 Capacidades

Comprende las características diodos semiconductores.

Comprende las características transistores bipolares

Comprende las características transistores FET.

Aplica los circuitos integrados y dispositivos de potencia en el campo industrial.

Comprende las características del amplificador operacional ideal y sus aplicaciones.

3.3 Contenidos actitudinales

Comprende las características teórico - prácticas de los diodos semiconductores.

Comprende las características teóricas práctica de los transistores bipolares.

Comprende las características teóricas práctica de los transistores de Efecto de campo.

Reafirma los circuitos integrados y dispositivos de potencia en el campo industrial **Comprende** las características del amplificador operacional ideal y sus aplicaciones.

IV. PROGRAMACIÓN DE CONTENIDOS Y ACTIVIDADES

UNIDAD I: DIODOS SEMICONDUCTORES

CAPACIDAD:	Comprende las	características	diodos	semicono	ductores

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	TOTAL HORAS
1	Introducción al curso Niveles de Energía, Materiales extrínsecos tipo P y N. cálculo de niveles Identificación de los materiales que se emplean en el Laboratorio	Expone los conceptos y principios fundamentales de Energía y materiales extrínsecos. Calcula los niveles de Energía Describir los materiales a utilizar en el laboratorio	Lectivas (L): Introducción al tema - 1 hora Desarrollo del tema – 1 horas Práctica de Laboratorios- 2 horas Virtual con Proteus o Simulink	4
2	Diodo ideal, Construcción Básica y Características del diodo. Curva Experimental del Diodo en laboratorio	Expone los conceptos y principios del diodo Ideal. Calcula característica del diodo ideal Describir los materiales a utilizar en el laboratorio	Lectivas (L): Introducción al tema - 1 hora Desarrollo del tema – 1 horas Laboratorio - 2 horas Virtual con Proteus o Simulink	4
3	Parámetros de los diodos Resistencia de CD Resistencia en AC o dinámica. Circuito Equivalente. Aplicación del Diodo de Silicio en circuitos CD En laboratorio	Resuelve y da solución de Parámetros de diodo semiconductor Aplica los conocimientos teóricos para resolver problemas. Experimenta la aplicación de diodo en circuitos CD	Lectivas (L): Introducción al tema - 1 hora Desarrollo del tema – 1 horas Laboratorio - 2 horas Virtual con Proteus o Simulink	4
4	Circuitos Equivalentes modelos del diodo. Corrientes de Desplazamiento y de Difusión efecto de la temperatura en diodos Aplicación del Diodo de semiconductores En laboratorio	Expone los conceptos y principios fundamentales del modelo del diodo. Calcula las corrientes de desplazamiento y difusión Experimenta con diodos semiconductores en el laboratorio	Lectivas (L): Introducción al tema - 1 hora Desarrollo del tema – 1 horas Laboratorio - 2 horas Virtual con Proteus o Simulink	4
5	Diodo Zener, Características. Aplicaciones Diodo de barrera Schotky. Diodo Varactores. Diodo de potencia. Diodo Túnel. Curva Experimental del Diodo Zener y aplicación en laboratorio	Expone los conceptos y principios fundamentales del diodo Zener. Calcula las corrientes del Diodo Zener Como Regulador. Experimenta con diodos Zener como Regulador en el Diodo laboratorio Comprende las características teórico - prácticas de los diodos semiconductores.	Lectivas (L): Introducción al tema - 1 hora Desarrollo del tema – 1 horas Laboratorio - 2 horas Virtual con Proteus o Simulink	4

UNIDAD II: Transistores Bipolares de Unión

CAPACIDAD: Comprende las características del transistor Bipolar

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HORAS
6	Transistor de Unión Bipolar. Operación del Transistor Acción Amplificadora Cálculo de los parámetros del Transistor del transistor en y utilizando manuales en Laboratorio.	Expone los conceptos y principios fundamentales del Transistor. Calcula las corrientes del transistor. Experimenta los parámetros del Transistor en laboratorio	Lectivas (L): Introducción al tema - 1 hora Desarrollo del tema – 1 horas Laboratorio - 2 horas Virtual con Proteus o Simulink	4
7	Configuraciones. Base Común, Configuración Emisor Común. Colector Común Valores Nominales. Máximos del Transistor. Polarización CD: BJT Curva Experimental del Transistor y aplicación en laboratorio	Expone los conceptos y principios fundamentales de la configuración con BJT. Calcula las corrientes del Transistor en sus configuraciones. Experimenta la curva del transistor en laboratorio Comprende las características teórico - prácticas de los Transistores bipolares	Lectivas (L): Introducción al tema - 1 hora Desarrollo del tema – 1 horas Laboratorio - 2 horas Virtual con Proteus o Simulink	4

8	EXAMEN PARCIAL		

UNIDAD III: Transistores de Efecto de campo

CAPACIDAD: Comprueba las características teórica práctica de los transistores de Efecto de campo.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	TOTAL HORAS	
9	Transistores de Efecto de Campo. Descripción Construcción. Gráficas	Expone los conceptos y principios fundamentales del Transistor FET Calcula las corrientes del transistor FET. Experimenta los parámetros del FET en laboratorio	Introducción al tema - 1 hora Desarrollo del tema – 1 horas Laboratorio - 2 horas Virtual con Proteus o Simulink	4	
10	Polarización del FET. Amplificador J-FET con Auto polarización. Circuitos con polarización	Expone los conceptos y principios y polarización del FET Calcula las corrientes del transistor FET. Experimenta los parámetros del FET	Introducción al tema - 1 hora Desarrollo del tema – 1 horas Laboratorio - 2 horas Virtual con Proteus o Simulink	4	

_						
	11	Polarización CD: del FET Polarización Fija. Punto de Operación. Circuito de polarización.	Expone los conceptos y principios fundamentales del Transistor. Calcula las corrientes del transistor. Experimenta midiendo los parámetros del FET	 Introducción al tema - 1 hora Desarrollo del tema – 1 horas Laboratorio - 2 horas Virtual con Proteus o Simulink 	4	
			Comprende las características teórico - prácticas de los Transistores Unipolares diodos semiconductores.			

UNIDAD IV: Dispositivos de potencia, Circuitos Integrados y el Amplificador Operacional Ideal y sus Aplicaciones

CAPACIDAD: Aplica los circuitos integrados y dispositivos de potencia en el campo industrial, y las Aplicaciones del Amplificador Operacional Ideal

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	TOTAL HORAS
12	Dispositivos de Potencia. Rectificador, controlado Operación Básica. Características aplicaciones de Los Dispositivos de Potencia	Expone los conceptos y principios fundamentales de los dispositivos de potencia SCR. Rectificador controlado de silicio Calcula las corrientes del SCR. Experimenta midiendo los parámetros del FET	 Introducción al tema - 1 hora Desarrollo del tema – 1 horas Laboratorio - 2 horas Virtual con Proteus o Simulink 	4
13	El SCR Activado por Luz, Diac, Triac. Transistor de Mono unión. Circuitos Integrados Monolítico, Mascarillas. Filtros Activos.	Expone los conceptos y principios fundamentales del SCR y otros dispositivos. (DIAC, TRIAC, UJT, y Opto electrónicos. Calcula las corrientes del DIAC, TRIAC, UJT. Experimenta midiendo los parámetros del SCR y en las que el circuito contiene los Zener, UJT, DIAC, TRIAC, SCR, etc.	 Introducción al tema - 1 hora Desarrollo del tema – 1 horas Laboratorio - 2 horas Virtual con Proteus o Simulink 	4
14	Circuitos Integrados especiales	Expone los conceptos y principios fundamentales del Circuitos integrados CI. Calcula Cantidad o unidades integradas Experimenta características del CI Reafirma los circuitos integrados y dispositivos de potencia en el campo industrial	 Introducción al tema - 1 hora Desarrollo del tema – 1 horas Laboratorio - 2 horas Virtual con Proteus o Simulink 	4

15	El Amplificador Operacional Ideal y sus Aplicaciones.	Expone los conceptos y principios fundamentales del Amplificador Operacional Ideal Calcula Cantidad o unidades integradas del Amplificador Operacional Ideal (OPAMP) en sus diversas configuraciones. Experimenta características del CI OPAMP ideal y sus Aplicaciones. Reafirma el CI OPAMP ideal y sus aplicaciones y en proyectos de investigación y en el campo industrial.	 Introducción al tema - 1 hora Desarrollo del tema - 1 horas Laboratorio - 2 horas Virtual con Proteus o Simulink 	4
16	EXAMEN FINAL			
17	EXAMEN SUSTITUTORIO			

V. ESTRATEGIAS DIDÁCTICAS

- · Método Expositivo Interactivo. Disertación docente, participación activa del estudiante.
- · Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones.
- · Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con qué se hace y el estudiante ejecuta, para demostrar lo que aprendió.

VI. RECURSOS Y MATERIALES

Se expondrá aspectos conceptuales y aplicativos del curso con el uso del proyector. Se resolverá problemas de aplicación de en la pizarra acrílica. Se resolverá problemas y se verificará su respuesta mediante su implementación en el laboratorio y programas de simulación o aplicación. Se hará uso de la computadora con software como Proteus o Simulink (Laboratorio Virtual con Proteus o Simulink)

En el laboratorio Virtual con Proteus o Simulink se Diseña, implementa, analiza y comprueba algunos de los temas relacionados con algunos tópicos de las unidades indicadas en la programación de contenidos.

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final se obtiene del modo siguiente:

$$PF = (EP + EF + PP + PL)/4$$

PF = Promedio Final

EP = Examen Parcial

EF = Examen Final

PP = Promedio de Prácticas Calificadas

PL = Promedio Laboratorio Virtual, incluido el Proyecto/Monografía.

VIII. FUENTES DE CONSULTA.

Bibliográficas

- SCHILLING, D. (2016). Principios de electrónica. 1st ed.
- Lowenberg, E. (2000). Teoría y problemas de circuitos electrónicos. México: Libros McGraw-Hill.
- BOYLESTAD (2005) Teoría de circuitos electrónicos... 7st ed.
- Gray, P., Searle, C. and Fernandez Ferrer, J. (2005). Principios de electrónica. Barcelona. etc.: Reverté.
- GRAY MEYER: Análisis y Diseño de Circuito Integrado Analógico, Editorial, P.H.I. 3ra. Edición.
- THOMAS L. FLOYD (2010) Dispositivos Electrónicos, Editorial, PEARSON PRENTICE HALL., 11va Edición
- RICHARD C. JAEGER & TRAVIS N. BLALOCK, Diseño de Circuitos Microelectrónicos Editorial Mc Graw Hill. 4ta Edición.
- LUÍS PRAT VIÑAS, ED., Circuitos y Dispositivos Electrónicos, Editorial, Alfaomega, 6ta Edición.
- JIMMIE J. CATHEY, Dispositivos Electrónicos y Circuitos, Editorial, Mc. Graw Hill, 3era Edición.
- DONALD A. NEAMEN, Análisis y Diseño de Circuitos Electrónicos, Editorial, Mc.Graw Hill, 5ta Edición.
- SAVANT, Diseño Electrónico-Circuitos y Sistemas, Editorial, Addison-Wesley Iberoamericana, 2da Edición
- JULIO FONCADA G, El Amplificador Operacional, Editorial, Alfaomega, 3era Edición. (2015).
- DORF R., Dispositivos Electrónicos, Editorial, Alfaomega, 3era Edición (2015).
- Otros materiales didácticos en PDF y/o Videos tutoriales.